Search results for "aryl halides"

showing 4 items of 4 documents

Synthesis of 1,3-bis(trimethylcyclam) and 1,3-bis(trimethylcyclen) substituted benzenes

2009

Pd-catalyzed amination of 1,3-dibromobenzene with N,N',N''-trimethylcyclam and N,N',N''-trimethylcyclen provided corresponding 1,3-bis(tetraazamacrocyclic) derivatives of benzene in 25-32% yields. The dependence of the products yields on the phosphine ligand applied (BINAP, DavePHOS) as well as on the stoichiometry of starting compounds was established. Scope and limitations for the synthesis of N-phenyl and N-(3-bromophenyl) derivatives of trimethylcyclam and trimethylcyclen were demonstrated.

010405 organic chemistryLigandPd catalysis[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic Chemistryamination[CHIM.ORGA] Chemical Sciences/Organic chemistry010402 general chemistry01 natural sciences0104 chemical sciencesAnalytical Chemistryaryl halideschemistry.chemical_compoundchemistrytetraazamacrocycles[ CHIM.ORGA ] Chemical Sciences/Organic chemistryOrganic chemistryBenzenePhosphineStoichiometryAminationComputingMilieux_MISCELLANEOUSBINAP
researchProduct

Stabilized Naked Sub-nanometric Cu Clusters within a Polymeric Film Catalyze C-N, C-C, C-O, C-S, and C-P Bond-Forming Reactions

2015

[EN] Sub-nanometric Cu clusters formed by endogenous reduction of Cu salts and Cu nanoparticles are active and selective catalysts for C−N, C−C, C−O, C−S, and C−P bond-forming reactions. Sub-nanometric Cu clusters have also been generated within a polymeric film and stored with full stability for months. In this way, they are ready to be used on demand and maintain high activity (TONs up to 104 ) and selectivity for the above reactions. A potential mechanism for the formation of the sub-nanometric clusters and their electronic nature is presented.

ARYL HALIDESTECNOLOGIA DE ALIMENTOSDIAMINE LIGANDSULLMANNHeterogeneous catalysisBiochemistryCatalysisCoupling reactionCatalysisMECHANISMSColloid and Surface ChemistryQUIMICA ORGANICAOn demandPolymer chemistryOxidationHigh activityOrganic chemistryPotential mechanismTEMPERATURECu nanoparticlesChemistryGeneral ChemistryHETEROGENEOUS CATALYSISCROSS-COUPLING REACTIONSGOLD CLUSTERSSelectivityCOPPER CLUSTERS
researchProduct

Palladium-Catalysed Intermolecular Direct C–H Bond Arylation of Heteroarenes with Reagents Alternative to Aryl Halides: Current State of the Art

2022

Abstract: This unprecedented review with 322 references provides a critical up-to-date picture of the Pd-catalysed intermolecular direct C–H bond arylation of heteroarenes with arylating reagents alternative to aryl halides that include aryl sulfonates (aryl triflates, tosylates, mesylates, and imidazole-1-sulfonates), diaryliodonium salts, [(diacetoxy)iodo]arenes, arenediazonium salts, 1-aryltriazenes, arylhydrazines and N’-arylhydrazides, arenesulfonyl chlorides, sodium arenesulfinates, arenesulfinic acids, and arenesulfonohydrazides. Particular attention has been paid to summarise the preparation of the various arylating reagents and to highlight the practicality, versatility, and limit…

Organic ChemistryHeteroarenes palladium direct C–H bond arylation catalysis regioselectivity aryl halidesSettore CHIM/06 - Chimica OrganicaCurrent Organic Chemistry
researchProduct

Multiple Roles of Isocyanides in Palladium-Catalyzed Imidoylative Couplings: A Mechanistic Study

2016

International audience; Kinetic, spectroscopic and computational studies examining a palladium-catalyzed imidoylative coupling highlight the dual role of isocyanides as both substrates and ligands for this class of transformations. The synthesis of secondary amides from aryl halides and water is presented as a case study. The kinetics of the oxidative addition of ArI with RNC-ligated Pd-0 species have been studied and the resulting imidoyl complex [(ArC=NR)Pd(CNR)(2)I] (Ar=4-F-C6H4, R = tBu) has been isolated and characterized by X-ray diffraction. The unprecedented ability of this RNC-ligated imidoyl-Pd complex to undergo reductive elimination at room temperature to give the amide in the p…

Denticityisocyanidepd-c bondStereochemistryeffective core potentialsIsocyanidechemistry.chemical_element010402 general chemistry01 natural sciencesMedicinal chemistry[ CHIM ] Chemical SciencesCatalysisReductive eliminationinsertionchemistry.chemical_compoundAmide[CHIM]Chemical Sciencescouplingsingle-carbonylation reactions010405 organic chemistryArylOrganic Chemistrycarbon-monoxidezerovalent palladiumGeneral Chemistrycyclopalladated complexespalladiumOxidative addition0104 chemical sciencesaryl halidesreaction mechanismsCatalytic cyclechemistryn-heterocyclessequential insertionPalladiumpalladated phenol derivatives
researchProduct